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A heat wave propagating in a locally inhomogeneous medium containing elongated channels with elevated 
thermal diffusivity is considered. 

When shock waves propagate in a locally inhomogeneous medium containing thin elongated channels of 

lower density,  the main shock front becomes distorted and a disturbance of a wedge-like, conic, or other  geometry 

- -  "a precursor" (see, e.g., survey [1 ]) - is formed ahead of it. Depending on the strength of the shock wave and 

the relative rarefaction in the channel the developing two-dimensional or three-dimensional  flow may bifurcate, 

i.e., pass from a regime with a stationary "small-scale" precursor to that with a self-similar growing "large-scale" 

precursor. At present  both regimes are being studied theoretically and experimentally in detail [1 ]. 

We will show that  the presence of analogous channels with a reduced thermal resistance leads to the 

appearance of precursors  ahead  of the fronts of temperature  waves as well. It is established that  unlike the 

gasdynamic case, no bifurcation of the process takes place - -  the heat precursors are always stat ionary in the limit. 

Nevertheless, their  characteristic sizes may greatly exceed the channel thickness, and the time for establishing a 

stationary regime of thermal  disturbance propagation may be large. 

We now illustrate the obtained results by the example of analysis of two problems: problem I on a stationary 

heat wave and problem II on a "point" thermal explosion. 

We consider a simple nonlinear heat conduction model equation in the two-dimensional planar geometry 

0(0 ) 0( 0T / 
o-7 = ox ~r" ~ + ~ ~r~ ~ (1) 

at n > 0 in the domain {x ___ 0, y > 0}. 

The coefficient x(x,  y) = x o = const is constant everywhere except for the semi-infinite layer  (the plane 

channel) {x _ A, y ___ 6}, in which to(x, y) = axo, a >_ 1. 
In problem I, A -- 0, the initial data are T(x, y, 0) = 0, and the boundary  conditions are T(0, y, t) -- 

At l/n, OT/Oz(x, O, t) = O. 

In problem II, A = 6, the initial temperature in the domain x 2 + y2 _< 6 2 i s  T ( x ,  y, O) = TO, in the domain 
2 y2 62 x + > it is assumed that T(x, y, 0) = 0, and the boundary conditions are 

Or (x, O t )=or  
Oy ' -~x (0 ,  y ,  t) = O. 

In the absence of a disturbing layer  (at a = 1) both problems are one-dimensional (problem II is in a cylindrical 

coordinate system) and self-similar. We give, according to [2 ], an exact solution of problem I that corresponds to 

a heat wave propagating along the x axis with the constant speed D = (xOAn/n)0"5: T(x, y) = [ n D / t c o ( D t  - x)  ]l/n, 
0 <_x<_Dt, T(x, t) = O , x  >Dt.  
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Fig. 1. Stationary heat wave. The form of the temperature front for different 

moments of time (figures at the curves) in Cartesian Ca), self-similar (b), and 

stat ionary (c) coordinates. 
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Fig. 2. Stat ionary heat  wave. Coordinates of the fronts of disturbed and 

undis turbed heat waves as a function of time. 

Figure 1 presents a schematic of the front of a two-dimensional heat wave in Cartesian, self-similar, and 

"stationary" coordinates obtained in numerical calculation of problem I in = 2, a = 16) for different moments of 

time t D / 6  ( indicated at the corresponding curves). It is seen that the rate of growth of the heat  precursor  

continuously decreases and the configuration of the disturbed temperature front changes from quasi-similar to 

stationary. 

Figure 2 gives the coordinate X 0 of the front of an undisturbed heat wave and the coordinate Xp of the top 

of the precursor - the front of the disturbed wave - at y = 0 as a function of time. There,  it is also seen that the 

solution attains a stat ionary regime with the limiting length l - 3 6 6  of the precursor. 
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Fig. 3. Thermal  explosion. The form of the temperature front at different 

moments of time (figures at the curves) in Cartesian (a) and self-similar (b) 

coordinates. 
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Fig. 4. Thermal  explosion. The  precursor length versus time. 

Using the condition of heat balance in the precursor for the given problem, we may evaluate approximately 

the length of the precursor at the stationary stage l = K(a  - 1), where K - 2 - 3 .  Since a may be much larger than 

unity, l >> 6. 

We now present  some calculation results for problem II with the same values of n and a as in problem I. 

The  configuration of the temperature front for different moments of time (t/to) 1/6, indicated at the corresponding 

curves, where to --+coT'~c5 z, in Cartesian and self-similar coordinates is shown in Fig. 3. It is seen that the precursor 

is "pulled" into a cylindrical wave (in self-similar coordinates) and the configuration of thermal  disturbance almost 

converts into the s tat ionary one (on Cartesian coordinates).  In Fig. 4, where the time dependence of l = Xp - YT 

- -  the difference of the coordinates of the wave fronts along the x and y, respectively, is plotted, the length of the 

heat precursor is seen to asymptotically attain a stationary value. The  limiting value l - 4 6 6 ,  at tained in this problem 

also greatly exceeds the thickness of the channel and is close to the analogous parameter  in problem I. 

The  results obtained show that at sufficiently high values of a the length of the heat precursor may con- 

siderably exceed the channel  thickness. For instance, in the case of radiative heat conduction in a completely ionized 

gas X _ p - 3 ;  when the density in the channel decreases by a factor of 10 compared to the ambient  density, a 
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N 10 3 and, according to the given estimate, l / c 5  - 10 3. This effect also exists in the case of linear heat conduction 

(at n = 0). 

It is pertinent to note that heat precursors in locally inhomogeneous media must also appear in the presence 

of distributed sources or heat sinks, e.g., ahead of the fronts of combustion waves. It is interesting to verify 

experimentally the predicted regularities of propagation of heat precursors. 

In conclusion, the authors wish to express their gratitude to I. V. Nemchinov for his interest in this work. 
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